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Resumen 
 
El uso de la forma como criterio discriminante entre clases de objetos extraídos de una 

imagen digital, es uno de los roles más importantes en la visión por computadora. El uso de la 

forma ha sido estudiado extensivamente en décadas recientes, porque el borde de los objetos 

guarda suficiente información para su correcta clasificación, adicionalmente, la cantidad de 

memoria utilizada para guardar un borde, es mucho menor en comparación a la cantidad de 

información contenida en la región que delimita. En este artículo, se propone un nuevo 

descriptor de forma. Se demuestra que el descriptor es invariante a la perspectiva, es estable 

en la presencia de ruido, y puede diferenciar entre diferentes clases de objetos. Un análisis 

comparativo es incluido para mostrar el rendimiento de nuestra propuesta con respecto a los 

algoritmos del estado del arte. 
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Palabras Clave: Reconocimiento de Patrones, Visión por Computadora, Descriptor de 

Forma, Transformación por Afinidad. 

 
Abstract 
 
The use of shape, as a mean to discriminate between object classes extracted from a digital 

image, is one of the major roles in machine vision. The use of shape has been studied 

extensively in recent decades, because the shape of the object holds enough information for 

its correct classification; additionally, the quantity of memory used to store a border is much 

less than that of the whole region within it. In this paper, a novel shape descriptor is 

proposed. The algorithm demonstrates that it has useful properties such as: invariance to 

affine transformations that are applied to the border (e.g., scales, skews, displacements and 

rotations), stability in the presence of noise, and good differentiability between different 

object classes. A comparative analysis is included to show the performance of our proposal 

with respect to the state of the art algorithms. 

Key words: Pattern Recognition, Machine Vision, Shape Descriptor, Affine Transformation. 

 

Resumo 
 

Usando critério discriminante do caminho entre as classes extraí-dois de uma imagem digital, 

objetos é um dos papéis mais importantes na visão de computador. A utilização da forma tem 

sido extensivamente estudado nas últimas décadas, porque a borda de objectos guardados 

suficientes relatórios-ing de classificação correcta, para além disso, a quantidade de memória 

usada para armazenar uma aresta, é muito mais baixa em comparação com a música 

quantidade de informação na região que delimita. Neste artigo, um novo descritor forma é 

proposto. Mostra-se que o descritor é invariante em perspectiva, que é estável na presença de 

ruído, e é possível diferenciar entre diferentes tipos de objectos. Uma análise comparativa é 

in-concluiu para mostrar o desempenho da nossa proposta sobre o estado dos algoritmos de 

arte. 

 

Palavras-chave: Reconhecimento de Padrões, visão computacional, descritor de 

formulário, Affinity transformação. 
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Introduction 
 

A shape descriptor is a qualitative or quantitative abstraction of the features that are present 

in the border of an object (Gonzalez & Woods, 2008). The shape of an object is a powerful 

low-level descriptor because it provides plenty of information about the object because the 

dynamic of the form is embedded in the border and, can be captured in a digital image. 

Working with only the border is faster computationally given that the number of points in the 

border is smaller than the number of points in the region within it, because the shape is used 

as a discriminating feature in object recognition applications. The shapes present in the image 

can be affected by various factors, such as: illumination, occlusion or a perspective change. 

 

The change in perspective is of special interest because it can be modeled with functions 

including: rotation, translation, scaling and skewing; all of these functions share the same 

algebraic representation in the Euclidean plane. They preserve points, straight lines, 

collinearity, planes and ratios of distances; also, they can be reversed (Artzy, 2008). These 

types of functions are classified as affine transformations or geometrical distortions. Thus, it 

is said that if two different shape descriptors are connected by affine transformations, then 

one can be obtained from the other, i.e., both come from the same object class. Many affine 

invariant descriptors have been proposed in the literature (Kazmi, You, & Zhang, 2013; 

Pillai, 2013; Krig, 2014), that extract boundary or region information. One way to classify 

boundary descriptors is by the type of information that is captured by it; if it is global 

information, the descriptor is robust against noise but the border dynamic is lost in the 

process (shape number descriptors are an example (Gonzalez & Woods, 2008)), in contrast, if 

the information captured by the boundary descriptor is local information, then the border 

dynamic is preserved but is very unsteady in the presence of noise or geometrical distortions 

(e.g., Fourier border descriptors (Gonzalez & Woods, 2008)). 

 

It is worth mentioning that an effective descriptor ideally has the following properties: 

 

Uniqueness, which means that every class of object has a unique descriptor 

representation. 

 



 

 

Revista Iberoamericana de las Ciencias Computacionales e Informática              ISSN: 2007-9915 

Vol. 6, Núm. 11                   Enero - Junio 2017                           RECI 

Differentiability, which means that every different class of object has a different repre-

sentation.  

 

Stability, which means that minimal change in the object induces minimal change in 

the representation. 

 

Other criteria such as robustness to illumination, incompleteness or resolution require specific 

techniques and considerations (Krig, 2014); for brevity; these will not be addressed here. 

 

Recent developments in shape descriptors seek to clean the points of interest from any affine 

transformation before processing them in other stages of the application. Statistical functions 

are used to reverse all affine transformations that could have been applied to the shape. The 

statistical process has the very attractive property that there is no need to search or infer 

parameters. In the work presented in (Mei & Androutsos, 2008), ICA (independent 

component analysis) and PCA (principal component analysis) are the methods proposed for 

reducing the shape into a canonical form; both statistical mechanisms demonstrated their 

merit by reversing arbitrary geometrical distortions without the need to calculate the specific 

parameters of their inverse functions. However, the resulting canonical form is not unique, 

such indetermination is a result of the nature of both processes; specifically, for every affine 

transformed class of borders that lie in the two dimensional Euclidean space, two canonical 

forms exist. One form is the 180-degree rotation of the other. In order to deal with such 

indetermination, the authors proposed computing the Fourier transform of the sampled 

signature curve of the border. Later, in (Mei & Androutsos, 2009), the authors used the CSS 

(curvature scale space) maxima as the affine invariant descriptor. The proposed descriptors 

share invariance to 180
◦
 rotations. In contrast in (Guney & Ertuzun, 2006), an exhaustive 

search that maximizes correlations between the original and transformed object boundaries is 

done to correct the sign ambiguities; similarly, in (Huang, Wang, & Zhang, 2005), a 

maximization is conducted over the negentropy parameter. Also in (Sener & Unel, 2006), the 

authors use higher p-q order moments of normalized shapes to solve the indetermination. In 

this work, the proposed method uses a similar approach; first, the borders extracted are 

normalized with PCA and then the skew of the resulting shapes is calculated. Depending on 

its sign, the border will either be rotated 180
◦
 or not, leaving a unique canonical form. Note 
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that only the sign of the skew is of interest, and that the calculation will be simplified because 

of the properties of the transformed points. 

 

The sections of this paper are organized as follows. Section "State of the Art" presents a 

review of the shape descriptors in the state of the art. In section "Preliminaries", all the 

mathematical background and border processing algorithms that are needed are briefly 

described. Section "Affine Invariant Shape Matching Classification" explains in detail the 

theoretical development of our proposal and presents the practical development. Next, section 

"Experiments and Analysis" explains the applied experimental tests and shows the obtained 

results, highlighting the pros and cons of our approach with respect to the proposed state of 

the art algorithms, and finally, in section "Conclusions", the results are interpreted. 

 

 

State of the Art 

 

In the following subsections, some state of the art algorithms are described; these were 

chosen because they have a large body of work behind them, they are largely used in industry 

and academia and they have been proven to be effective (Kazmi et al., 2013; Pillai, 2013). 

 

Fourier Descriptor 

 

The Fourier shape descriptor is one of the most applied shape descriptors (Rajput & Mali, 

2010; Ekombo, Ennahnahi, Oumsis, & Meknassi, 2009). The descriptor is obtained after the 

application of the Fourier transform to the coefficients of the shape signature. The four most 

utilized shape signatures are the centroid distance, complex coordinates, curvature function 

and cumulative angular function; among them, the centroid distance is the one that performs 

best (Kazmi et al., 2013). 

 

Before taking the border signature, the border has to be normalized to translations by 

subtracting the centroid of the shape; then, every point is divided by the standard deviation of 

each component to make it invariant to scale (Gonzalez & Woods, 2008). Next, the signature 
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is sampled. Then, the Fourier transform is applied to each coefficients of the sampled 

signature; see Equation 1. 

 
 
 
 
 
 
 
 
 

 

(a) Original. (b) Signature Curve. (c) Fourier Descriptor.  
Figure 1. Fourier Descriptor. 

 
 

𝑢𝑛 =
1

𝑁
∑ 𝑠(𝑡)𝑒𝑥𝑝 (

−𝑗2𝜋𝑛𝑡

𝑁
)

𝑁−1

𝑡=0

, 𝑛 = 0,1, … , 𝑁 − 1 (𝟏) 

The descriptor is completed by taking the module of every un coefficients; Figure 1 

depicts an example. 

 

Wavelet Descriptor 

 

The wavelet descriptor of closed planar curves, is a multi-resolution approach that 

decomposes the shape into components of several scales and is widely used in shape 

recognition applications (Ming et al., 2009). The elements in higher resolutions contain the 

global information, and the components in the finer resolutions contain detailed local 

information (Kazmi et al., 2013). The reduction of forms as stated in (Chuang & Kuo, 1996) 

consist of the decomposition of every dimension of the parametrized curve into 

approximation coefficients (xa(t), ya(t)) at scale M and detailed coefficients (xd(t), yd(t)) at 

scale M by means of the wavelet transform (with a bi-orthogonal basis); see Equation 2. 
 

[
𝑥(𝑡)

𝑦(𝑡)
] = [

𝑥𝑎
𝑀(𝑡)

𝑦𝑏
𝑀(𝑡)

] + ∑ [
𝑥𝑑

𝑀(𝑡)

𝑦𝑑
𝑀(𝑡)

]

𝑀

𝑀−𝑚0

 (𝟐) 

 

Next, these coefficients have to be normalized to scale, rotation and shift (Chuang & Kuo, 

1996). With the normalized coefficients, the shape is recovered with the inverse transform 

and the signature is taken, because this method requires a fixed evaluation starting point 

(Chuang & Kuo, 1996). Finally, the signature curve of the normalized shape is sampled; see 

Figure 2. 
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CSS Descriptor 

 

This is one of the mostly widely used algorithms in content-based image retrieval 

(CBIR) and general shape analysis (Frejlichowski, 2012). This method divides the shape into 

convex and concave segments, identifying a set of points where the curvature changes sign. 

The CSS algorithm involves calculating the curvature of the contour while progressively 

smoothing the curve. The smoothing process is done until the point when there are no zero 

curvature points left and the whole contour becomes convex. The CSS image is a curve on a 

two-dimensional plane that plots all the zero crossing points. The horizontal. 

 

Axis contains the position of the points on the contour while the vertical axis contains the 

level of smoothing performed on the contour (Kazmi et al., 2013). As stated in (Abbasi, 

Mokhtarian, & Kittler, 1999), given a parametrized curve in space l(t) = (x(t), y(t)), its points 

of inflection at σ level of smoothing can be found in the zero crossings of Equation 5. 

 
𝑋𝑡(𝑡, 𝜎) = 𝑥(𝑡) ⋆ 𝑔𝑡(𝑡, 𝜎),   𝑌𝑡(𝑡, 𝜎) = 𝑦(𝑡) ⋆ 𝑔𝑡(𝑡, 𝜎) (𝟑) 

 
𝑋𝑡𝑡(𝑡, 𝜎) = 𝑥(𝑡) ⋆ 𝑔𝑡𝑡(𝑡, 𝜎),   𝑌𝑡𝑡(𝑡, 𝜎) = 𝑦(𝑡) ⋆ 𝑔𝑡𝑡(𝑡, 𝜎) (𝟒) 

 

𝑘𝑡(𝑡, 𝜎) =  
𝑋𝑡(𝑡, 𝜎)𝑌𝑡𝑡(𝑡, 𝜎) − 𝑋𝑡𝑡(𝑡, 𝜎)𝑌𝑡(𝑡, 𝜎)

(𝑋𝑡(𝑡, 𝜎)2 + 𝑌𝑡(𝑡, 𝜎)2)
3

2⁄
(𝟓) 

 

The descriptor consists of the peaks of every curve in the CSS image, with a height bigger 

than one sixth of the biggest peak in the image; see Figure 3. Before starting the process, the 

shape points have to be equally sampled so every shape has the same perimeter; shifting the 

shape in space does not change the descriptor because of the nature of the descriptor. The 

nature of the descriptor is independent of a coordinate system, and rotation is attacked by a 

circularly shifting model and input descriptors to find the best match, i. e., the version of the 

minimum distance classifier in the CSS algorithm presented in (Abbasi et al., 1999); see 

Figure 3. 

 

 

 

 

 



 

 

Revista Iberoamericana de las Ciencias Computacionales e Informática              ISSN: 2007-9915 

Vol. 6, Núm. 11                   Enero - Junio 2017                           RECI 

Other Algorithms 

 

There are other the state of the art algorithms that exploit features other than shape; for 

completeness, it is worth mentioning them briefly. The local binary pattern descriptor 

(Pietikainen, Hadid, Zhao, & Ahonen, 2011) is a local texture codification that is quick to 

compute and capture the features in a tight manner. There are several variations of the LBP 

descriptor where the uniform, rotational invariant and symmetric stand out from the others 

and are widely used in recognition applications (Nanni, Lumini, & Brahnam, 2010). The 

binary robust invariant scalable keypoints (Leutenegger, Chli, & Siegwart, 2011), and the fast 

retina keypoint (Ortiz, 2012) descriptors are also local neighborhood descriptors that also 

include a keypoint detector. They were designed for quick computation, and are widely used 

in real time recognition applications. The speed-up robust features descriptor (Bay, Ess, 

Tuytelaars, & Van Gool, 2008), is also a local texture descriptor with many variations, such 

as Gauge SURF (Alcantarilla, Bergasa, & Davison, 2013). The SURF family of descriptors is 

regarded as one of the standard descriptors in industrial applications. 

 
 
 
 
 
 
 
 

 

(a) Original. (b) Normalized Shape. (c) Signature Curve.  
Figure 2 . Wavelet Descriptor. 

 

 

 

                         
                      (a) Original.                            (b) CSS image.                        (c) CSS peaks. 
 

Figure 3 . CSS Descriptor.



 

 

Revista Iberoamericana de las Ciencias Computacionales e Informática              ISSN: 2007-9915 

Vol. 6, Núm. 11                   Enero - Junio 2017                           RECI 

 

Every descriptor mentioned before was tested with the battery constructed for this work 

and was noted that the shape descriptors gave the best results. Confirming that shape 

descriptors are a better choice when the information in the frame has low variance, i.e., the 

intensity values in the frame are all clustered in regions, the extreme case is a black frame 

with white regions; in that case, there are no relevant keypoints to be detected. Thus, the 

present work focuses on shape descriptors. 

 

Preliminaries 

 

Border 

 

The borders obtained from objects in a digital image, can compose a set of two 

dimensional points, that is, every border can be defined as a finite and countable subset of the 

R
2
 Euclidean space with the property that every point is connected with the others by a path 

that, is defined by a criterion of a neighborhood (e.g., four neighbors or eight neighbors) and 

every point is a frontier point, meaning that at least one neighbor in the neighborhood of 

every point is not part of the object in question (Haralick & Shapiro, 1992; Gonzalez & 

Woods, 2008). If we denote an arbitrary border as β, then its definition is as follows: 

 

𝛽 = {𝑝 | 𝑝 ∈  ℝ2}  (𝟔) 

 

Affine transformations 

An affine transformation can be decomposed in a linear transformation followed by a 

translation, where such a lineal application must preserve the collinearity between points and 

the ratio of vectors along a line. An affine transformation is invertible if and only if the linear 

transformation is invertible. The invertible affine transformations (of a space into itself) form 

the affine group. Affine transformations in two real dimensions include the following: 

 

• Pure translations. 

• Scaling in a given direction, with respect to a line in another direction, combining 

negative signs and translations. This application includes projection, reflection and 

glide reflection. 
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• Rotation. 

• Shear mapping. 

• Squeeze mapping. 

 

Equation 7 shows the algebraic representation of an affine transformed point in the plane, 

with original coordinates (x, y). 

 

[
�̅�
�̅�

] = [
𝑎11 𝑎12

𝑎21 𝑎22
] [

𝑥
𝑦] + [

𝑏1

𝑏2
]  (𝟕) 

 

Or in a more compact algebraic notation as follows. 

 

�̅� = 𝐴𝑥 + 𝐵  (𝟖) 

 

Where the non-singular matrix with real entries A can be viewed as a composition of scale, 

skew and rotation functions in the plane as seen in Equation 9. 

[
𝑆𝑥 0
0 𝑆𝑦

] [
1 𝛼
0 1

] [
cos 𝜃 −𝑠𝑖𝑛𝜃
sin 𝜃 cos 𝜃

] (𝟗) 

Vector B represents a constant shift function. Two different borders, β1 and β2 are affine-

connected if one is the result of applying the same affine transformation to every point of the 

other border. 

 

𝛽2 = {𝑝2 | 𝑝2 = 𝐴𝑝1 + 𝐵}, ∀𝑝1 ∈ 𝛽1  (𝟏𝟎) 
 

More detailed information of geometrical transformations can be found in (Artzy, 2008). 

 

Principal Component Analysis 

 

We have defined a border β as a finite countable set of points p where p = [x, y]
T
 is a 

2X1 real entry matrix. The following auxiliary quantities are defined over the points in 

 

the border, i.e., the mean vector and the covariance matrix.  

 

𝑀𝑝 = 𝐸{𝑝}, ∀𝑝 ∈ 𝛽  (𝟏𝟏) 

𝐶𝑝 = 𝐸 {(𝑝 − 𝑀𝑝)(𝑝 − 𝑀𝑝)
𝑇

} (𝟏𝟐)  

 

Where E{•} denotes the expected value of the argument. For K points in a border, the mean 

vector can be approximated with the averaging expression. 
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𝑀𝑝 =
1

𝐾
 ∑ 𝑝𝑖

𝐾

𝑖=1

  (𝟏𝟑) 

Similarly, the covariance matrix could be approximated from the points in the border. 

 

𝐶𝑝 =
1

𝑘
 ∑ 𝑝𝑖𝑝𝑖

𝑇 − 𝑀𝑝𝑀𝑝
𝑇

𝐾

𝑖=1

  (𝟏𝟒) 

Because the points are two-dimensional the vector Mp is also two-dimensional and 

 Cp is a 2X2 matrix. Given that Cp is a real symmetric matrix, finding a set of two 

orthonormal eigenvectors is always possible (Noble & Daniel, 1988). Let e1 and e2 denote the 

eigenvectors and let λ1 and λ2 denote the eigenvalues associated with each eigenvector, 

respectively, arranged in descending order so that λ1 > λ2. Now let S denote a matrix where its 

rows are the eigenvectors that were found earlier ordered so that the first row corresponds to 

the vector associated with the largest eigenvalue. Now let us use S as a transformation matrix 

and define a mapping as seen in Equation 15. 

 

�̅� = 𝑆(𝑝 − 𝑀𝑝)  (𝟏𝟓) 

 

The last relation is known as the Hotelling transform or the principal component transfor-

mation. These new transformed points have several useful properties; the most notorious is 

that these p¯ points have zero mean. Other property come from linear algebra, i.e., the 

covariance matrix Cp of the original points is similar to the covariance matrix Cp¯ of the 

transformed points via the similitude matrix S (Strang, 2003). 

 

𝐶�̅� = 𝑆𝐶𝑝𝑆𝑇  (𝟏𝟔) 

The resulting matrix Cp¯ in Equation 16 is a diagonal matrix whose elements along the main 

diagonal are the eigenvalues of Cp (for more information about similitude relations refer to 

(Strang, 2003). 
 

𝐶�̅� = [
𝜆1 0
0 𝜆2

]  (𝟏𝟕) 

 

Equation 17 gives two of the properties that will be used extensively later; first, the variance 

along each dimension and the statistical independence of the dimensions. 
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Lagrange Polynomial 

 

Lagrange polynomial interpolation is a reformulation of the Newton polynomial 

avoiding the calculations of divided differences. The precise definition for a n − 1 grade 

polynomial that passes through n points in the plane (pi = [xi, yi], f or i = 0, ..., n) can be 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 . Signature curve of a border. 
 

 

Seen in Equation 18. 

𝑃𝑛−1 = ∑ 𝐿𝑖(𝑥)𝑓(𝑥)

𝑛

𝑖=0

  (𝟏𝟖) 

where: 

𝐿𝑖(𝑥) = ∏
𝑥 − 𝑥𝑗

𝑥𝑖 − 𝑥𝑗

𝑛

𝑗=0

, 𝑗 ≠ 𝑖  (𝟏𝟗) 

 
 
 

Between two points in the plane (p0 = [x0, y0] and p1 = [x1, y1]) exists only one line that passes 

through both (Press, Teukolsky, Vetterling, & Flannery, 2007); any value within such a line 

can be interpolated by a Lagrange polynomial of degree one with the following formula. 

 

𝑙(𝑥) =
𝑥 − 𝑥1

𝑥0 − 𝑥1
𝑦0 +

𝑥 − 𝑥0

𝑥1 − 𝑥0
𝑦1  (𝟐𝟎) 

  
Border Signature 
 

The border signature is a one-dimensional curve that captures the border variation with 

respect to one parameter. The most utilized parametrization is to compute the distance to the 

centroid of every point in the border as a function of the angle that is formed between the 

point and the positive x axis (Gonzalez & Woods, 2008; Haralick & Shapiro, 1992). 

Regardless of how the signature is parametrized, the goal is to achieve a reduction in the 
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dimensionality of a two-dimension problem to a one-dimension problem that, is apparently 

easier to manage. Figure 4 shows a border and the associated signature curve. 

 

Affine Invariant Shape Matching Classification (AISMC) 

 

Given an arbitrary cloud of points that is extracted from the border of an object in a 

digital image as input, the proposed AISMC algorithm consists of the following steps: 

 

1. Compute the mean vector of the points using Equation 13. 

 

2. Compute the covariance matrix of the points using Equation 14. 

 

3. Obtain the eigenvectors and eigenvalues of the covariance matrix. 

 

4. Build the transformation matrix S, using the eigenvectors ordered according to their 

associated eigenvalues. 

 

5. Apply Equation 15 to every point. 

 

6. Scale the points obtained in the last step with the standard deviation of each dimension. 

 

7. Compute the skew of one dimension and multiply it by -1 if necessary. 

 

8. Get the norm and angle of every point in the shape. 

 

9. Sort the points by angle. 

 

10. Build the sampled signature curve of the shape (using Equation 19 to interpolate when 

necessary). 

 

11. Obtain the difference vector between the signature that was computed in the last step 

and every signature curve in the knowledge set. 

 

12. Get the norm of every difference vector in the last step. 

 

13. Find the minimum norm. 

 

14. Assign the class label to the class related to the vector that returned the minimum norm. 
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Steps 1 to 10 comprise the canonical shape normalization phase of the algorithm, in which 

any arbitrary composition of affine transformations is reversed, reducing the shape to a 

canonical form. The next steps encompass the classification stage by using a minimum 

distance policy of classification. 

 

Canonical Form Normalization 

 

Start with a collection of affine-connected shapes as seen in Figure 5a. Each border 

contains an arbitrary number of points. Given an arbitrary shape in the collection, first, the 

mean vector has to be computed (step 1) in addition to the covariance matrix (step 2), over 

the points in the border. Next, build the transformation matrix S (the matrix whose rows are 

the eigenvectors of the covariance matrix arranged by descending eigenvalue) and apply the 

PCA transformation to every point in the border (steps 3 to 5). The first evident result is that 

all the borders are centered at a point (see Figure 5b), but there is still a sign ambiguity that is 

not as obvious (that represents a 180
◦
 rotation between the same shapes) and a loud 

magnitude discrepancy. It has been shown that the standard deviation that is used as a scaling 

factor gives good results (Haralick & Shapiro, 1992; Gonzalez & Woods, 2008; Pratt, 2001); 

this, is very convenient when computing Equation 17, where we obtain the variance along 

every dimension of the new shape. Next, (step 6) normalizes each component of every point 

in the shape with the standard deviation of the corresponding direction (the square root of the 

eigenvalue associ-ated with that dimension); in short, every point in the shape should have 

the following form: 
 

�̅� = 𝑆 (
𝑝𝑥−𝑚𝑥

√𝜆1

𝑝𝑦−𝑚𝑦

√𝜆2
)  (𝟐𝟏) 

 
 
 
 
 
 
 

 

(a) Affine connected shapes. 
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(b) PCA mapped points. 
 
 
 
 
 
 
 

 

(c) Whitened shapes. 
 
 
 
 
 
 
 

 

(d) Canonic form. 
 
 
 
 
 
 
 

 

(e) Signature Curve.  
 

Figure 5. AISMC form normalization. 
 
 

Equation 21 is known as whitening because the points have zero mean and unitary variance, 

such as white noise (Mei & Androutsos, 2009); the result is depicted in Figure 5c. Now that 

the inconsistency of the sign is very evident, let us discuss that inconsistency for a moment. 

The results showed that for any affine connected border, two valid canonical forms exist from 

which the transformed shape might have been obtained (breaking the uniqueness property). 

One way to think about this indetermination is to take a look back at the relation that the 

eigenvectors and eigenvalues of the covariance matrix Cp must meet. 

 

(𝐶𝑝 − 𝜆𝑖𝐼)𝑒𝑖 = 0, 𝑓𝑜𝑟 𝑖 = 1,2  (𝟐𝟐) 

 

If vector ei is multiplied by -1, the result would be the same; therefore there is a choice 

between two vectors with the same magnitude but opposite directions, and Figure 5c shows 

two classes of shapes with opposite directions. Specifically, one class is rotated 180
◦
 with 

respect to the other. Now it becomes clear that the process so far is intrinsically not 

deterministic. In general, it is not possible to make a bijective relation between the arbitrary 

rotations and the resulting eigenvectors of the points; therefore, it is necessary to find 
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alternative ways to work around this problem. Let us propose the following: compute the 

skew of the x component of the points, and use it as a measure of orientation. 

 

𝜀 =
1

𝐾
∑ 𝑥𝑖

3, 𝑥𝑖 ∈ 𝑝�̅�, ∀𝑝�̅� ∈ 𝛽

𝐾

𝑖

  (𝟐𝟑) 

 

The y dimension of the points is neglected because it is a statistically independent set of two-

dimensional points (see Equation 17). Because the magnitude of the skew is not of interest, 

the sign is sufficient to determine the orientation of the shape. Taking the positive direction 

(arbitrarily), it is decided that every cloud of points with a negative skew is going to be 

multiplied by -1 (see that number as a 180
◦
 rotation), as seen in Equation 24. 

  

�̅� = {
−�̅�,   𝑖𝑓 𝜀 < 0
�̅�, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

  (𝟐𝟒) 

 

The results can be seen in Figure 5d. With this we can find one canonical form for a class of 

affine connected shapes. Next (step 8) is to take the k points of the border and compute the 

distance to the origin and the angle that the point makes with the positive x axis. Now a 

sampling rate must be selected to sample the border; if the situation occurs when the 

difference between angles of consecutive points is too large to accommodate the sampling 

step, then the value can be interpolated using Equation 19. Otherwise, if the difference 

between angles of consecutive points is too small to accommodate the sampling step then the 

next point must be considered. The result is the border signature of the sampled border as 

seen in Figure 5e. 

 

It should be noted that the descriptor rendered by the process was designed to render a 

unique representation, i.e., it has the uniqueness property. It also has the differentiability 

property because different border dynamics will have different signature curves. If minimal 

changes are applied to the border, such as Gaussian noise, then the points in the border will 

be minimally shifted from the centroid; therefore, the border signature will be shifted 

proportionally, so the descriptor has the stability property. 
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(a) bell. (b) bottle. (c) key (d) face. (e) flatfish 

 
 
 
 
 
 

 
(f) carriage. (g) lmfish (h)  personal- (i) teddy  

car  
Figure 6. Repository Subset. 

 
 

 

It should be noted that the mean vector is a key factor in the calculation; hence, this 

descriptor is sensitive to anything that changes it. For example occlusion, where partial 

incompleteness of the shape would render a different mean vector to the one obtained from 

the same non occluded shape resulting in two different descriptors. However, same shapes 

that take on different illumination conditions can effectively change the descriptors. 

Illumination is the source of all images, so it is the most important factor to consider, it also 

represents its own problematic (Krig, 2014). 

 

Minimum Distance Classification 

 

The classification phase needs a knowledge set that is a collection of sampled border 

signatures denoted by Λ. Every element in the collection represents a prototype of the 

canonical form of a known object; let us use ωi to denote an arbitrary signature set in the 

collection. Taking these border signatures as descriptors, the classification step is defined by 

taking the difference of the unknown signature δ and every prototype signature ωi in the 

knowledge set. The class label is assigned to the vector that renders the minimum norm, as 

follows: 

𝑐𝑙𝑎𝑠𝑠 = 𝑖, 𝑓𝑜𝑟 𝑚𝑖𝑛‖𝛿 − 𝜔𝑖‖, ∀𝜔𝑖 ∈ Λ  (𝟐𝟓) 

 

It should be noted that this equation is a very low complexity calculation with respect to the 

other classification algorithms, but it will be used to measure the descriptor properties. 
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Experiments and Analysis 

 

In this section, the test that was used to demonstrate the performance of the al-gorithms 

is explained in Section. Then, the methodology used to pick the sample rate parameter is 

presented in Section and finally, the experiments and results are described in Section. 

 

 

Test Set 
 

The test set was extracted from two different sources: the first subset test was taken 

from the image repository (manual in preparation, 2016) and is shown in Figure 6, a second 

subset was selected because of the similarity of the shapes in order to measure the 

differentiability of the descriptors and consists of six pollen particles (Figure 7); taken as 

models; test patterns were constructed by applying the affine transformation shown in 

Equation 26. 

 

𝑆𝑅𝐼𝑖, 𝑓𝑜𝑟 𝑖 = 1,2,3,4,5,6  (𝟐𝟔) 

 

Where S represents a resolution transformation, the magnitude of the original model was 

transformed by a factor taken randomly from the interval [10%,200%], R represents a 

rotation transformation, the angle of the rotation is a number taken randomly from the 

interval [0
◦
,360

◦
], and I represents the original image or original shape. The displacement that 

completes the affine transformation and the scale transformation is embedded in the 

resolution factor, and the skew is a result of the composition of the resolution and rotation 

functions. Then, another set was constructed by adding noise to each image of the object that 

in general represents non affine transformations and non-reversible maps, specifically as 

follows: 

 

Blur filter, which is a 5x5 Gaussian filter with σ = 20. 

Pepper noise, which is 25% of the pixels in the image, taken randomly, where changed to 0. 

Half information reduction, which reduces the image by taking one of every two rows and 

columns. 

Quarter information reduction, which reduces the image by taking one of every four rows 

and columns. 
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Figure 7. Synthetic Subset. 
 

 

 

 

 

 

 

 

 

Figure 8. Adding noise to the synthetic set. 
 

 

 
 

 

 

The results of the above processes are depicted in Figure 8. All of the above processes 

comprised the set that was used to test the algorithms; in total, 385 pattern tests were applied. 

 

Sample Rate 

 

As mentioned in sections: , and , at some point in the algorithms pipeline, a sampling 

rate needs to be established, but there is no deterministic way of doing that because there is 

no wrong answer; any value could deliver a valid answer, so the problem becomes a search 

for the sampling rate that provides the best performance. In other words, the sampling rate 

has to be optimized. 

 

For that, the real domain version of the univariate marginal distribution algorithm was used to 

find such a value (Simon, 2013). It was executed with a search domain defined in the interval 

[0.1, 360] and a set of 10 candidate solutions, from which a subset of 6 solutions is taken to 

create the next generation with a maximum of 100 generations; the algorithm was executed 10 

times. The results can be seen in Figure 9. 
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Results 

 

The same data set was used with each algorithm (Section 2). The performance was 

measured with the minimum distance classifier, excluding the CSS algorithm that has de-

fined its own classification step (Abbasi et al., 1999), the implementations were made in 

Matlab 2012b, and test were performed in an acer M5 computer.. The results are listed in 

Figure 10, as a measure of differentiability. In order to test the stability property of the 

proposed descriptor, a class prototype was chosen and noise was added in an iterative 

manner. In each iteration, each point in the shape was randomly moved in a ten-unit ratio, 

then the canonical shape was taken and the stability was measured by taking the medium 

quadratic error (MSE) of each point in the modified shape with respect to its corresponding 

point in the initial prototype, as noted in Figure 11. The obtained descriptor reflects the 

changes induced to the initial shape in a proportional way, providing enough stability to the 

recognition process of similar shapes. Finally, the same methodology of computing the MSE 

 

Algorithm Classification Rate(%) 
Canonical 
Shape 74 

Fourier 51 

Wavelet 40.5 

CSS 63.5 

Figure 10. Differentiability Results. 
 

 

Magnitude was used to measure uniqueness between some prototypes in the knowledge set; 

specifically, the error was measured between a couple of different shapes in the set and with 

similar shapes, as depicted in Figure 12. The results are measured in error %. As the reader 

can see, similar shapes as shown in the Figure have a lower percentage of uniqueness; 

meanwhile, very differentiable shapes have a higher MSE, thus complying with the property 

that similar shapes must have similar descriptors and different shapes must have different 

descriptors. 
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(a) 0th Iteration. (b) 10th Iteration. 

 
 
 
 
 
 

 
 
 
 
(c) 20th Iteration.  (d) 30th Iteration 

 

 

 
Iteration 

 

Error Rate(%) 

 

 
 

 0th Iteration  0 
 

 10th Iteration  0.24 
 

 20th Iteration  0.6 
 

 30th Iteration  0.8 
 

 
Figure 11. Stability Results. 

 
 
 
 
 
 
 

 

(a) Similar (b) Similar 
Shape #1.  Shape #2.  

 
 
 
 

 
 
 
(c) Diff erent (d) Diff erent 
Shape #1. Shape #2. 

 
 
Iteration Error Rate(%)  
Similar 1.34  
Different 26.5  

 
Figure 12. Uniqueness Results. 
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Conclusions 
 

The method proposed to reverse affine transformations in a deterministic manner have 

an easy formulation, and its implementation results in a mostly linear cost algorithm. Because 

the computational load depends directly on the number of points, it has to be noted that 

obtaining eigenvectors and eigenvalues of a matrix are a computationally heavy operation, 

but in this context, all the matrices are two by two, making it reasonable to always take the 

worst case as a constant. It was also shown that out descriptor meets the properties of 

uniqueness, differentiability and stability. However, it has to be said that it is not robust 

against partial occlusion, because it does not capture local information; this method is a 

global shape descriptor. The results were promising; the canonical shape signature captures 

the shape dynamic in a manner comparable with the state of the art descriptors. 
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